

# Mini Project

# Final Report

## <Features in an Aircraft Restroom>

Group Members : <Abirami Baskaran – (21)>

Class : CE2004P

Module Lecturers : Mr TK Choo / Mr BH Lim

# Table of Contents

|          |                                                 | <b>Page</b>  |
|----------|-------------------------------------------------|--------------|
| <b>1</b> | <b>Project Description</b>                      | <b>1</b>     |
|          |                                                 |              |
| <b>2</b> | <b>Truth Table</b>                              | <b>2</b>     |
|          |                                                 |              |
| <b>3</b> | <b>Port Assignment Diagram / Wiring Diagram</b> | <b>3</b>     |
|          |                                                 |              |
| <b>4</b> | <b>Flowchart</b>                                | <b>4-5</b>   |
|          |                                                 |              |
| <b>5</b> | <b>Source Code</b>                              | <b>6-10</b>  |
|          |                                                 |              |
| <b>6</b> | <b>Problems Encountered and Solutions</b>       | <b>11</b>    |
|          |                                                 |              |
| <b>7</b> | <b>Conclusion</b>                               | <b>12</b>    |
|          |                                                 |              |
|          | <b>Annex A – Development Pictures</b>           | <b>13-16</b> |
|          |                                                 |              |

## 1. Project Description

*<What is the problem statement?>*

- Smoking is prohibited in all aircrafts, due to safety reasons. Yet, some smokers continue to smoke as they couldn't help their addiction. Which is why many airlines add a smoke detector in their restroom. However, there are cases where smokers tried to tamper the smoke detector. Hence, to catch the culprit, a tamper detection is built in with the smoke detector.
- A lot of electricity could be consumed when a light is bright for a long time. To prevent that, the light in the restroom conserves energy by remaining dim if it is not occupied
- Restrooms can build up an odour when frequently used. Hence, a ventilation fan and an air freshener are added inside the restroom for a deodorizing environment
- To avoid any unnecessary disturbance to occupier, an 'Occupied' sign is attached outside the restroom, and it will light up once a person locks the door. This is to indicate the other passengers that the restroom is not vacant.

*<Briefly state your project working principle clearly>*

- Once a person walks in and **locks the door**, the **occupied sign outside the restroom will light up**. In addition to that, there is a **ventilation fan which will start to spin**, and an **air freshener that sprays perfume every 1 second per minute** (for this project it'll be 1.6 seconds). And the **dimmed light inside the restroom will shine bright**.
- If the person was a smoker and tries to **smoke a cigar**, the smoke detector will sense it and a **light inside the cabin crew's room will light up**. If the person notices the smoke detector and **tries to break it or cover it**, a loud **buzzer will start to go off**. Even if the smoker takes his hands away from the buzzer and/or tries to clear the smoke away, the **buzzer and the light will not turn off** as the culprit could escape without being noticed. **Both will only turn off once the main switch is offed and on again.**
- Lets say a person straight up tries to **tamper the smoke detector** before even lighting up his cigar, **both the light and buzzer will turn on**, **and will not off until the main switch is offed**.
- If the main switch is off, all functions are disabled. The main switch also acts as a reset function for both the smoke and tamper detector.**

|                                        |
|----------------------------------------|
| <b>A</b> -Outcome for Door Lock Sensor |
| <b>A</b> -Outcome for Smoke Detector   |
| <b>A</b> -Outcome for Tamper Detector  |
| <b>A</b> -Outcome for Main Switch      |

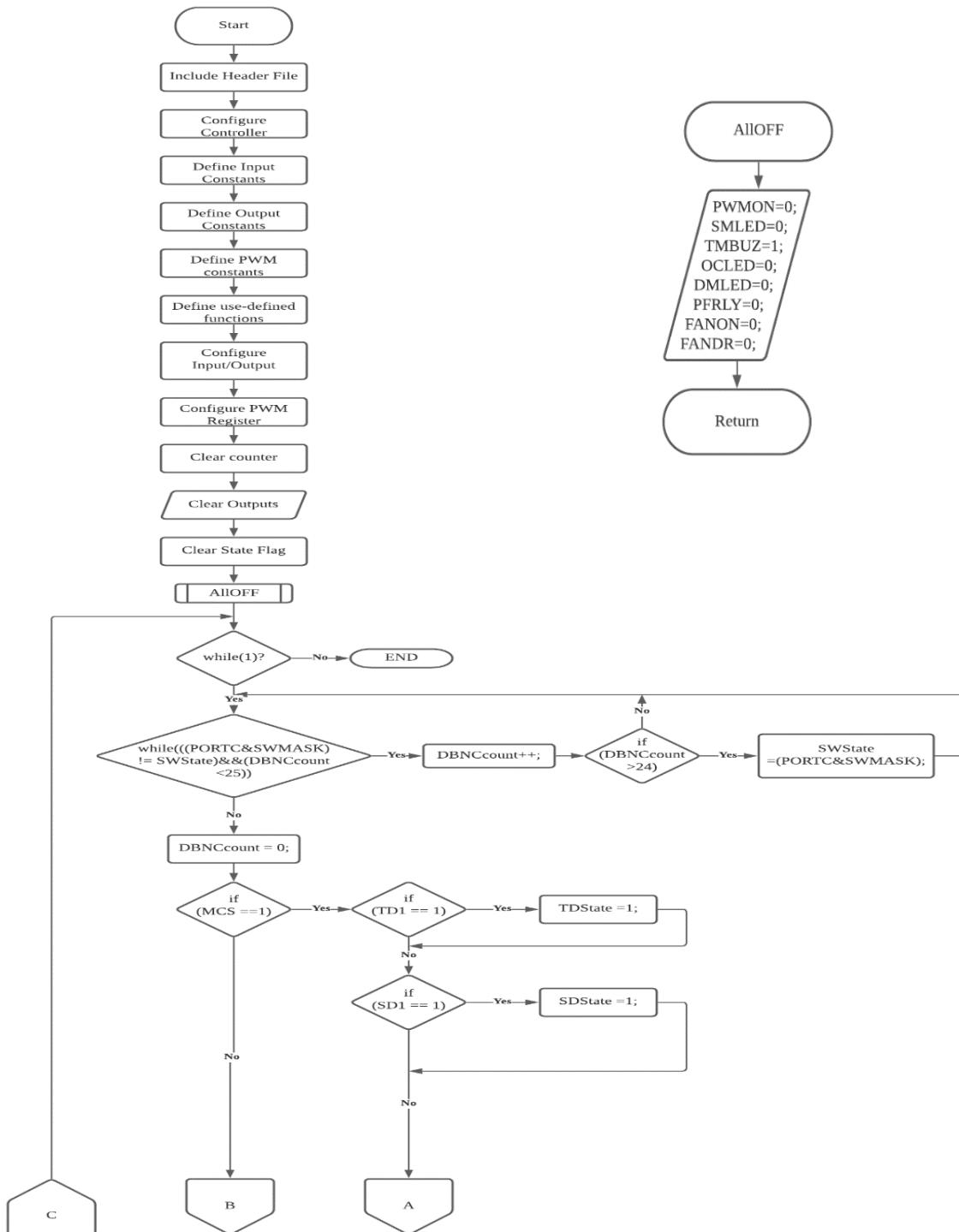
*<list the peripherals used>*

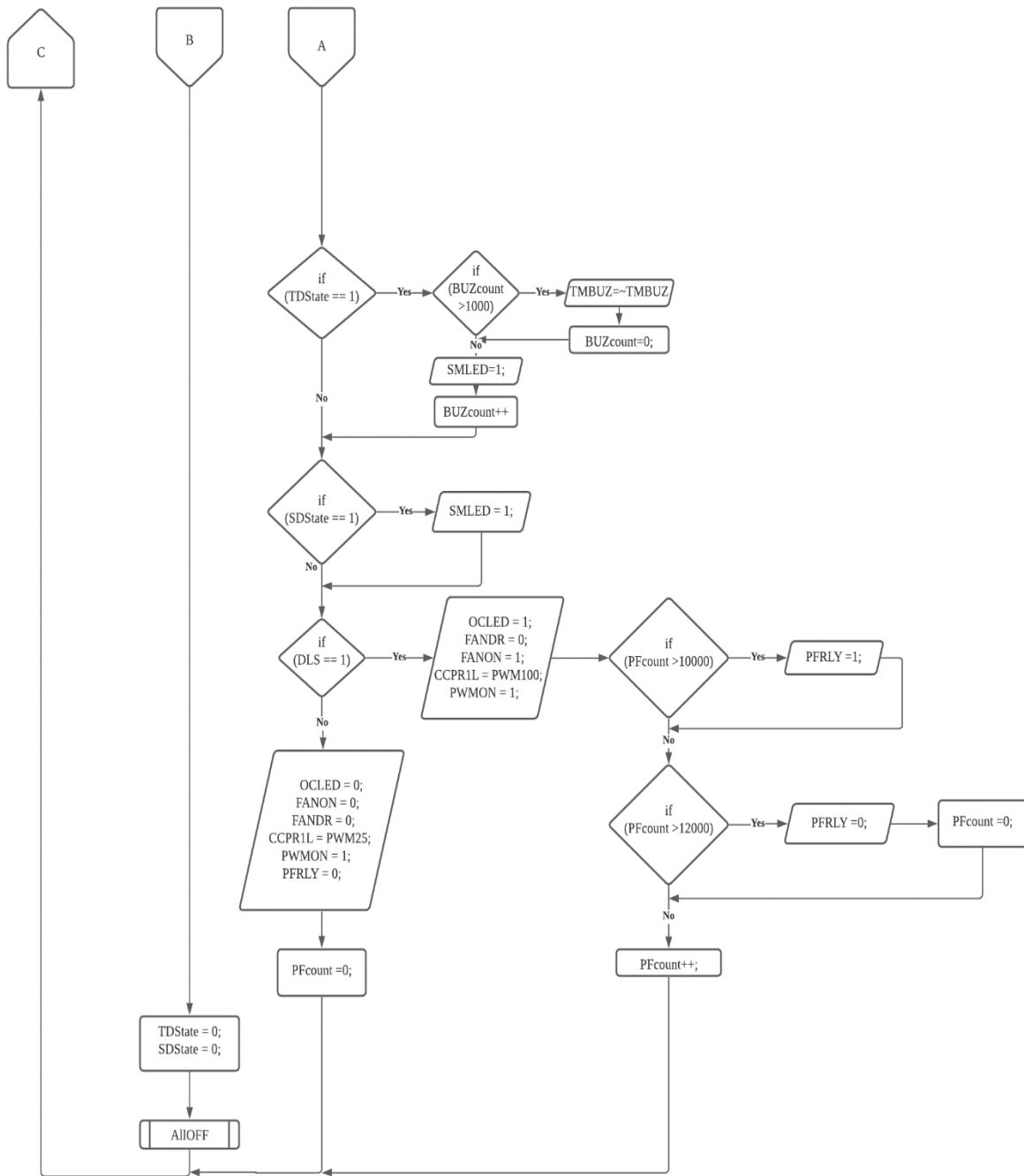
Switches (x4)

LEDs (x4 and x1 buzzer)

Motor (x1)

Pulse Width Modulator (x1)


## 2. Truth Table


| Inputs                       |                             |                         |                        | outputs                         |                                             |                                   |                           |                               |                                |
|------------------------------|-----------------------------|-------------------------|------------------------|---------------------------------|---------------------------------------------|-----------------------------------|---------------------------|-------------------------------|--------------------------------|
| <i>Smoke Detector 1 (S1)</i> | <i>Tamper Sensor 1 (S2)</i> | <i>Door Sensor (S6)</i> | <i>Main Switch(S7)</i> | <i>Smoke Detection Led (L1)</i> | <i>Tamper Detection (Buzzer in the MCU)</i> | <i>Light inside restroom (L3)</i> | <i>Air Freshener (L4)</i> | <i>Occupied sign Led (L5)</i> | <i>Ventilation Fan (motor)</i> |
| X                            | X                           | X                       | 1                      | OFF                             | OFF                                         | OFF                               | OFF                       | OFF                           | OFF                            |
| 0                            | 0                           | X                       | 0                      | OFF                             | OFF                                         | As per S3                         | As per S3                 | As per S3                     | As per S3                      |
| X                            | 1                           | X                       | 0                      | ON                              | ON/OFF every 0.5sec                         | As per S3                         | As per S3                 | As per S3                     | As per S3                      |
| 1                            | 0                           | X                       | 0                      | ON                              | OFF                                         | As per S3                         | As per S3                 | As per S3                     | As per S3                      |
| 1                            | 1                           | X                       | 0                      | ON                              | ON/OFF every 0.5sec                         | As per S3                         | As per S3                 | As per S3                     | As per S3                      |
| X                            | X                           | 0                       | 0                      | As per S1/S2                    | As per S1/S2                                | 50%                               | OFF                       | OFF                           | OFF                            |
| X                            | X                           | 1                       | 0                      | As per S1/S2                    | As per S1/S2                                | 100%                              | Every min, On for 1sec    | ON                            | ON                             |

### **3. Port Assignment Diagram / Wiring Diagram**

| <b>Category</b>      | <b>Port Number</b> | <b>Allocation</b> | <b>Remarks</b>   |
|----------------------|--------------------|-------------------|------------------|
| <b><i>PORt C</i></b> | 0                  | S0                | Smoke Detector   |
|                      | 1                  | S1                | Tamper Detector  |
|                      | 2                  | L5                | PWM LED          |
|                      | 6                  | S6                | Door Lock Sensor |
|                      | 7                  | S7                | Main Switch      |
|                      |                    |                   |                  |
| <b><i>PORt D</i></b> | 0                  | L0                | Smoke LED        |
|                      | 1                  | BUZZER            | Buzzer           |
|                      | 2                  | L3                | Occupied         |
|                      | 3                  | L4                | Air Freshener    |
|                      | 6                  | MR                | Ventilation Fan  |
|                      | 7                  | MF                | Ventilation Fan  |

## 4. Flowchart





## 5. Source Code

```

#include<p18f4520.h>

#pragma config OSC=INTIO67          //set external High-Speed(HS) oscillation
#pragma config LVP=OFF              //disable the Watchdog feature of the MCU
#pragma config WDT=OFF              //disable Low Voltage programming (LVP)
#pragma config PBADEN=OFF           //Port B Analogue to Digital (AD) module is OFF

//Input definitions
#define SD1 PORTCbits.RC0          // Define Smoke Detector 1 as Port B bit 0
#define TD1 PORTCbits.RC1          // Define Tamper Detector 1 as Port B bit 1
#define DLS PORTCbits.RC6           // Define Door Lock Detector 1 as Port B bit 6
#define MCS PORTCbits.RC7           // Define Main Control Switch 1 as Port B bit 7
#define SWMASK 0b11000011           // Mask only Switch connected bits

//Output definitions
#define SMLED PORTDbits.RD0         // Smoke Detect LED
#define TMBUZ PORTDbits.RD1         // Tamper detect Buzzer
#define OCLED PORTDbits.RD2         // Occupied sign LED
#define PFRLY PORTDbits.RD3         // Perfume Relay
#define FANON PORTDbits.RD6          // Fan Motor ON (MR)
#define FANDR PORTDbits.RD7          // Fan Motor Direction (MF)
#define DMLED PORTCbits.RC2          // Define PWM output at Port C bit 2

#define PWMON T2CONbits.TMR2ON        //Enable PWM by enabling Timer 2
#define PWM25 0b00100111             //PWM duty cycle register value for 25% = PR2 = 4.992msec
#define PWM100 0b10011100            //PWM duty cycle register value for 100% =4*PR2= 9.984msec

```

```

void AllOFF(void)
{
    PWMON = 0;           // Disable PWM
    SMLED = 0;           // Smoke Detect LED OFF
    TMBUZ = 1;           // Tamper detect Buzzer OFF
    OCLED = 0;           // Occupy LED OFF
    DMLED = 0;           // Dimmer LED OFF
    PFRLY = 0;           // Perfume Relay OFF
    FANON = 0;           // FAN Motor OFF
    FANDR = 0;           // FAN motor Default direction
}

void main()
{
    char DBNCcount;      //debounce count
    char SWState;         //Main control switch state
    char TDState;         // Tamper Detect state
    char SDState;         // Smoke Detect state
    long int BUZcount;    // Define Buzzer counter
    long int PFcount;     // Define Perfume Counter

    TRISC = SWMASK;      // Configure Port C bit <7:6> and <1:0> as input other are outputs
    TRISD = 0x00;         // Configure Port D as output

    BUZcount = 0;          //Initialize Buzzer counter
    PFcount = 0;           //Initialize Perfume counter
    SWState = 0;           //Initialize Switch state
    TDState = 0;           //Initialize Tamper Detect state
    SDState = 0;           //Initialize Smoke Detect State
    PORTD = 0;             //Ensure all outputs are in OFF state
    PORTC = 0;             //Clear Port C

    OSCCON = 0b01000000;  //Internal Oscillator frequency = 1MHz, bit<6:4>=100
    T2CON = 0b00000110;   //Timer2 is ON (bit2 = 1), TMR2 presale = 16(bit 1=1, bit 0=0)
    PR2 = 156;             //PWM Period = [(PR2) + 1] * 4 * TOSC *(TMR2 Prescale Value) for Tosc= (1/1M)sec,
                           //PWM period = [156+1] * 4 * (1/1M) * (16) = 10.048msec
    CCP1CON = 0b00001100; //CCP1M<3:0> 1100 = PWM mode, P1C active-high, duty cycle reg <1:0> = 00
}

```

//PWM Duty Cycle = (CCPR1L:CCP1CON&lt;5:4&gt;) \* TOSC \* (TMR2 Prescale Value)

//PWM Duty Cycle = (0b0100111000=312)(1/1M)(16) = 4.992msec or 50% Duty cycle

AI0FF();

```

while (1)                                //infinity loop
{
  while (((PORTC&SWMASK) != SWState)&&(DBNCcount <25)) //De-bounce Port C
  {
    DBNCcount++;
    if (DBNCcount >24)                      //if Port C stable for 10 counts
    {
      SWState =(PORTC&SWMASK);           //Port C value updated in SWState
    }
    DBNCcount = 0;                         //De-bounce counter reset

    if (MCS ==1)                         //Main control Switch state ON
    {
      if (TD1 == 1)                      //if Tamper detect ON
      {
        TDState =1;                      //setTamper detect state is active
      }

      if (SD1 == 1)                      //if Smoke detector is ON
      {
        SDState =1;                      //Smoke detect state is active
      }

      if (TDState == 1)                  //Tamper detector state ON
      {
        if (BUZcount >1000) //check buzzer counter reached approximately 0.5 sec for 4MHz osc freq
        {
          TMBUZ = ~TMBUZ; //Toggle Buzzer
          BUZcount =0;    //reset Buzzer conter
        }

        SMLED = 1;          //smoke detector ON
        BUZcount++;        //increment Buzzer counter
      }
    }
  }
}

```

```

if (SDState == 1)           //if Smoke detector state is OFF
{
    SMLED = 1;             //smoke detector ON
}

if (DLS == 1)               //Door Lock Sensor ON
{
    OCLED = 1;             //Occupied sign LED on
    FANDR = 0;              // FAN motor direction set to forward rotation. (MF)

    FANON = 1;              // FAN Motor ON (MR)
    CCPR1L = PWM100;         //set PWM duty cycle register for 100% Duty cycle
    PWMON = 1;               //Enable PWM

    if (PFcount >10000)      //check Perfume counter reached approximately 1min
    {
        PFRLY =1;             //Turn ON perfume
    }

    if (PFcount >12000)      //check perfume counter reached 1min 1sec
    {
        PFRLY =0;             //Turn OFF perfume
        PFcount =0;             //reset Buzzer counter
    }

    PFcount++;                //increment Perfume counter
}

else                         //Door Lock Sensor Switch OFF
{
    OCLED = 0;               //Occupied sign LED off
    FANON = 0;                //FAN Motor OFF (MR)
    FANDR = 0;                //FAN motor Default direction (MF)
    CCPR1L = PWM25;           //PWM duty cycle register for 25% Duty cycle
    PWMON = 1;                //Enable PWM
    PFRLY = 0;                //Perfume Relay OFF
    PFcount =0;                //Reset Perfume counter
}

else                         //Main control Switch state OFF
{
    TDState = 0;              //Initialize Tamper Detect state
}

```

```
SDState = 0;           //Initialize Smoke Detect State
AllOFF();             //Ensure all outputs are in OFF state
}
}

}
```

## **6. Problems Encountered and Solutions**

*<What are the problems you faced during this mini project implementation?>*

- Debounce Error
- Smoke detector LED and buzzer won't turn off once the main switch is turned OFF and ON again. (*logical error*)
- Code for PWM wasn't working.

*<what methods have you considered?>*

- Google the errors and search for the possible solutions
- Read the book to see if I missed out anything

*<how did you resolve them?>*

- I added a code to prevent debounce error
- I tried to alter my code after some research
- I researched more on PWM and managed to understand execute it on my code

## **7. Conclusion**

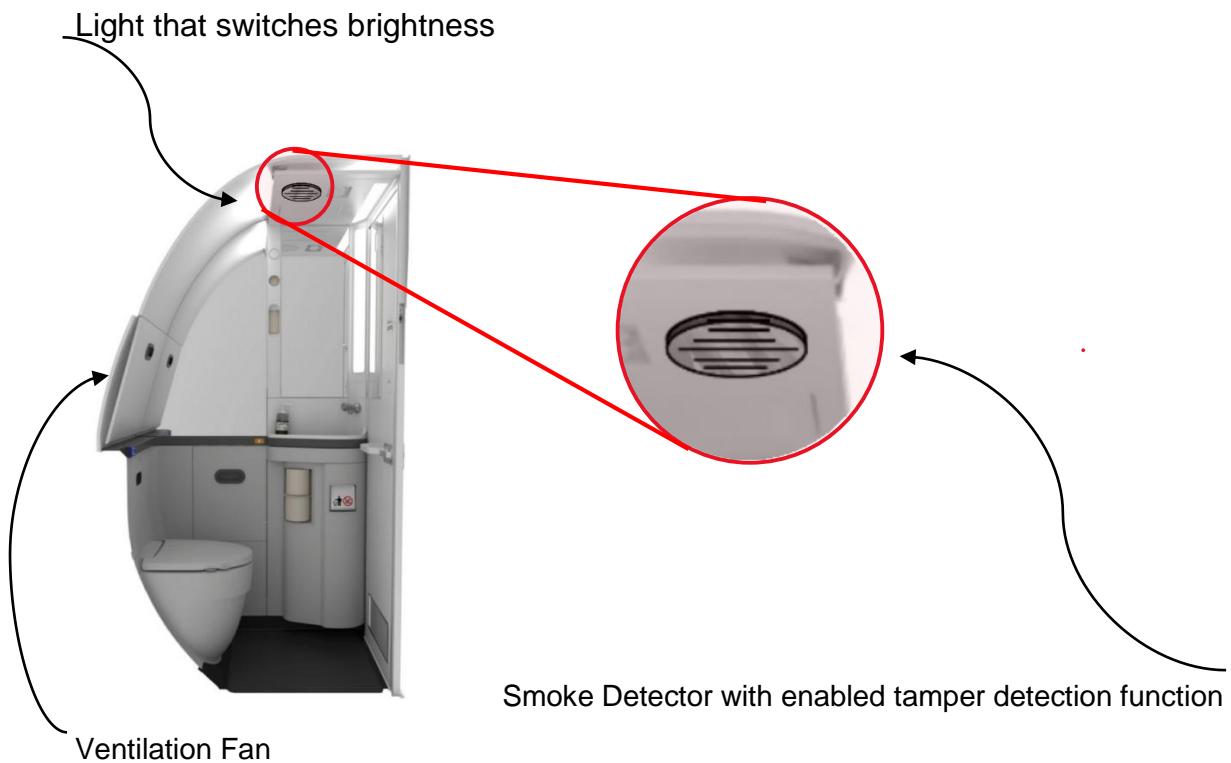
*<What are your thoughts of this Mini project?>*

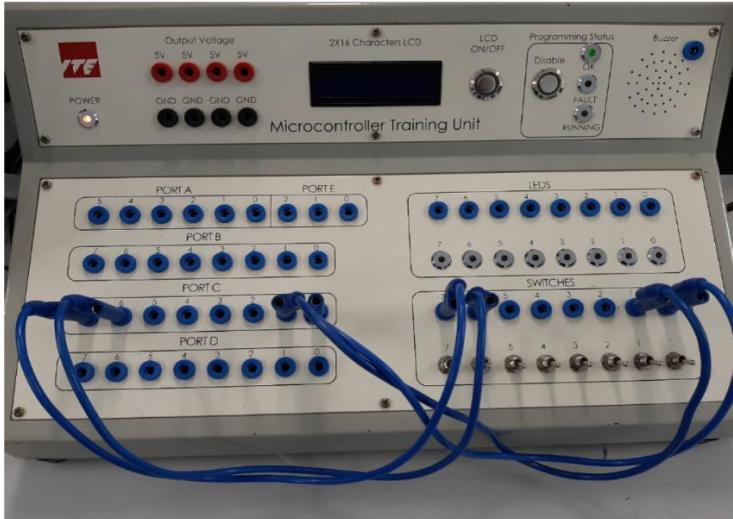
-I've gained a lot more confidence in programing compared to last time. While this project was stressful, the satisfaction of completion was priceless.

*<What have you learnt from this Mini project implementation?>*

-I've learned about PWM, Motor and the Buzzer

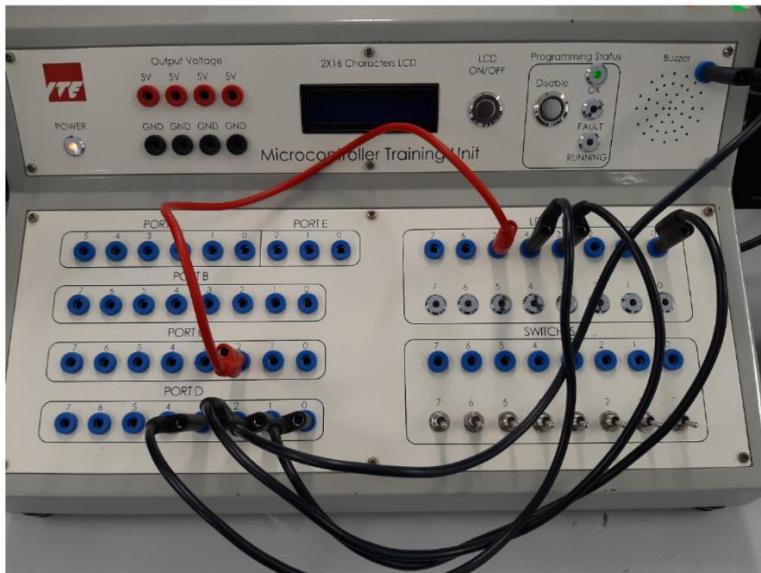
-I've learned that it may seem hard at first, but as long as I don't give up or choose an easier route, I will be well pleased with the final result.



*<who would you like to thank?>*


-Firstly, I'd like to thank my father as he helped me realize there was a way to solve the debounce error.

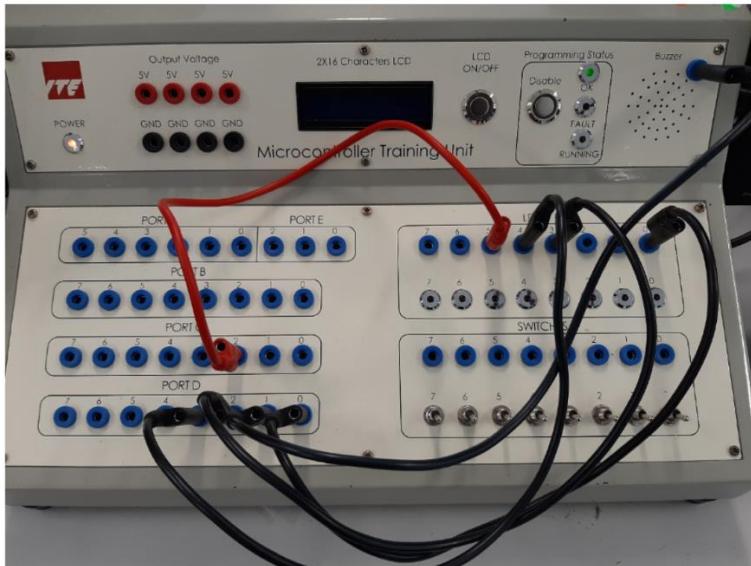
-Secondly, I'd like to thank my friends for supporting when I felt stressed

-Lastly, I'd like to thank the teachers in charge of creating this exciting and informative project.

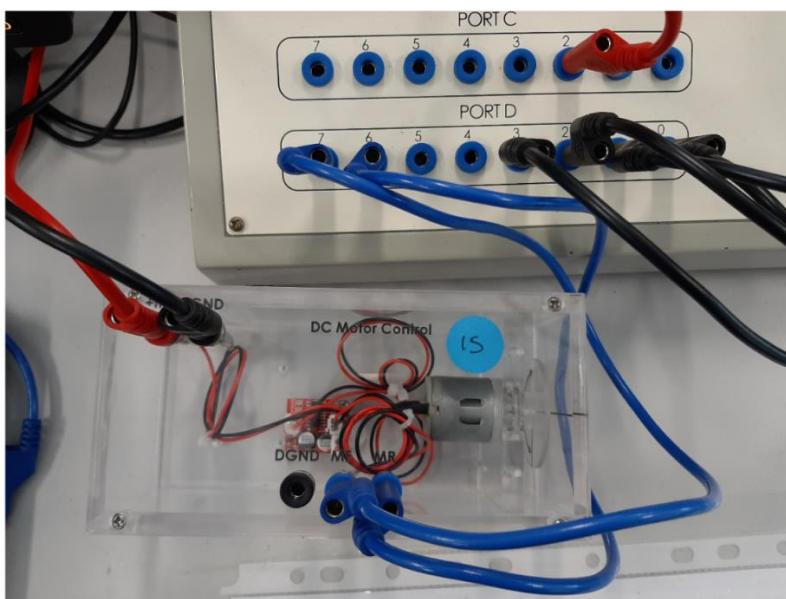

## Annex A



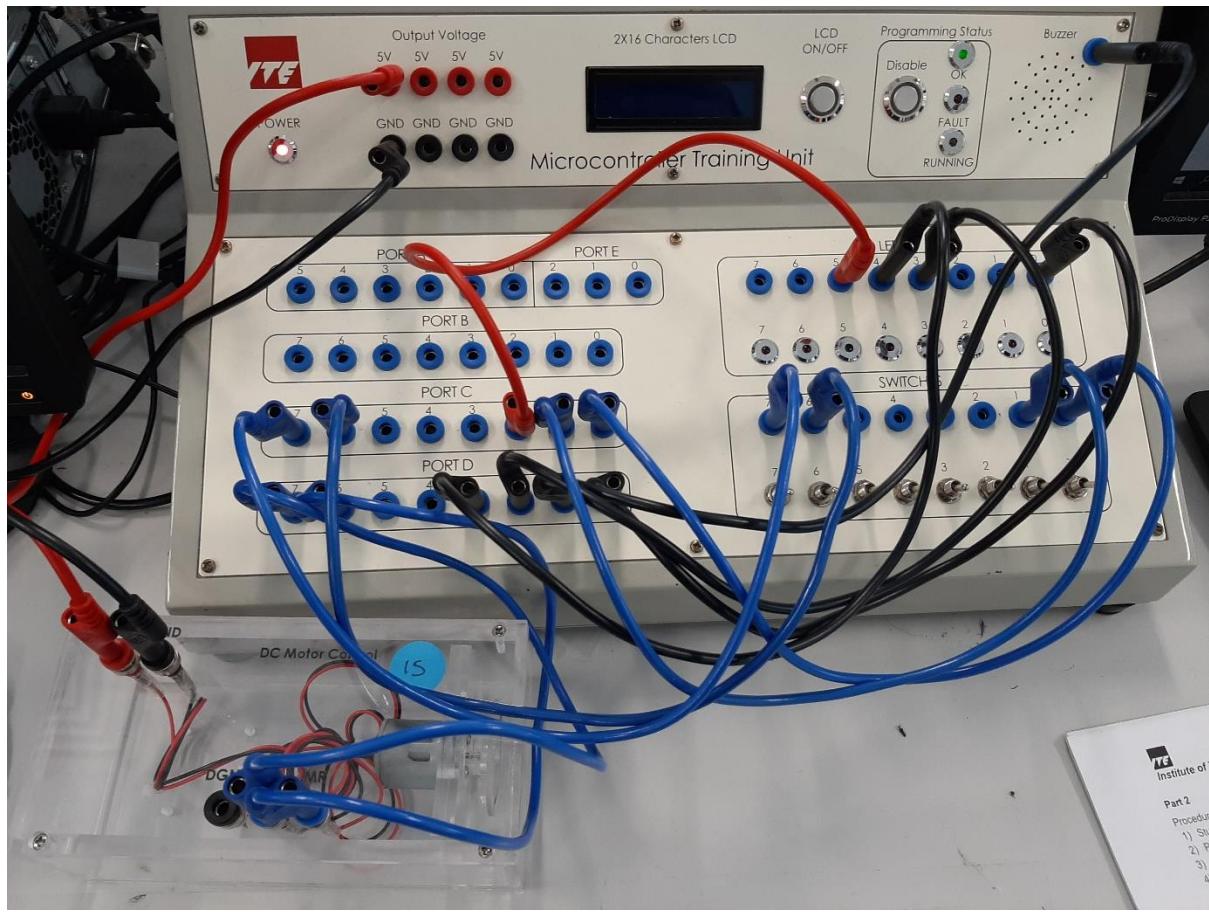



# Inputs

---




# PWM Outputs


---



# PWM Outputs



# Motor



# The End

